您现在的位置是:亿华云 > IT科技类资讯
遗传算法的基本概念和实现(附 Java 实现案例)
亿华云2025-10-03 11:52:26【IT科技类资讯】3人已围观
简介如上图左)所示,遗传算法当个体由多条染色体组成,每条染色体由多个基因组成。上图右)展示了染色体分割和组合方式。自然选择的概念 自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父
如上图(左)所示,遗传遗传算法当个体由多条染色体组成,算法实现a实每条染色体由多个基因组成。本概上图(右)展示了染色体分割和组合方式。念和
自然选择的现案概念自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父母的遗传特性,并且这些特性将添加到下一代中。算法实现a实如果父母具有更好的本概适应性,那么它们的念和后代将更易于存活。迭代地进行该自然选择的现案过程,最终,遗传我们将得到由最适应环境的算法实现a实个体组成的一代。
这一概念可以被应用于搜索问题中。本概我们考虑一个问题的念和诸多解决方案,并从中搜寻出***方案。现案
遗传算法含以下五步:
初始化 个体评价(计算适应度函数) 选择运算 交叉运算 变异运算 初始化该过程从种群的一组个体开始,且每一个体都是待解决问题的一个候选解。
个体以一组参数(变量)为特征,这些特征被称为基因,串联这些基因就可以组成染色体(问题的解)。源码下载
在遗传算法中,单个个体的基因组以字符串的方式呈现,通常我们可以使用二进制(1 和 0 的字符串)编码,即一个二进制串代表一条染色体串。因此可以说我们将基因串或候选解的特征编码在染色体中。
种群、染色体和基因
个体评价(计算适应度函数)个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体竞争的能力)。每一个体都有适应度评分,个体被选中进行繁殖的可能性取决于其适应度评分。适应度函数值越大,解的质量就越高。适应度函数是遗传算法进化的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。
选择运算选择运算的目的是选出适应性***的个体,亿华云计算并使它们将基因传到下一代中。基于其适应度评分,我们选择多对较优个体(父母)。适应度高的个体更易被选中繁殖,即将较优父母的基因传递到下一代。
交叉运算交叉运算是遗传算法中最重要的阶段。对每一对配对的父母,基因都存在随机选中的交叉点。
举个例子,下图的交叉点为 3。
父母间在交叉点之前交换基因,从而产生了后代。
父母间交换基因,然后产生的新后代被添加到种群中。
在某些形成的新后代中,它们的某些基因可能受到低概率变异因子的作用。这意味着二进制位串中的某些位可能会翻转。
变异运算前后
变异运算可用于保持种群内的多样性,并防止过早收敛。
终止在群体收敛的服务器租用情况下(群体内不产生与前一代差异较大的后代)该算法终止。也就是说遗传算法提供了一组问题的解。
案例实现种群的规模恒定。新一代形成时,适应度最差的个体凋亡,为后代留出空间。这些阶段的序列被不断重复,以产生优于先前的新一代。
这一迭代过程的伪代码:
START
Generate the initial population
Compute fitness
REPEAT
Selection
Crossover
Mutation
Compute fitness
UNTIL population has converged
STOP
Java 中的示例实现
以下展示的是遗传算法在 Java 中的示例实现,我们可以随意调试和修改这些代码。给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到***值。如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望***化适应度,并提供适应度达到***的个体所组成的群体。注意:本例中,在交叉运算与突变运算之后,适应度***的个体被新的,适应度***的后代所替代。
import java.util.Random;
/
**** @author Vijini
*/
//Main class
public class SimpleDemoGA {
Population population = new Population();
Individual fittest;
Individual secondFittest;
int generationCount = 0;
public static void main(String[] args) {
Random rn = new Random();
SimpleDemoGA demo = new SimpleDemoGA();
//Initialize population
demo.population.initializePopulation(10);
//Calculate fitness of each individual
demo.population.calculateFitness();
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
//While population gets an individual with maximum fitness
while (demo.population.fittest < 5) {
++demo.generationCount;
//Do selection
demo.selection();
//Do crossover
demo.crossover();
//Do mutation under a random probability
if (rn.nextInt()%7 < 5) {
demo.mutation();
}
//Add fittest offspring to population
demo.addFittestOffspring();
//Calculate new fitness value
demo.population.calculateFitness();
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
}
System.out.println("\nSolution found in generation " + demo.generationCount);
System.out.println("Fitness: "+demo.population.getFittest().fitness);
System.out.print("Genes: ");
for (int i = 0; i < 5; i++) {
System.out.print(demo.population.getFittest().genes[i]);
}
System.out.println("");
}
//Selection
void selection() {
//Select the most fittest individual
fittest = population.getFittest();
//Select the second most fittest individual
secondFittest = population.getSecondFittest();
}
//Crossover
void crossover() {
Random rn = new Random();
//Select a random crossover point
int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);
//Swap values among parents
for (int i = 0; i < crossOverPoint; i++) {
int temp = fittest.genes[i];
fittest.genes[i] = secondFittest.genes[i];
secondFittest.genes[i] = temp;
}
}
//Mutation
void mutation() {
Random rn = new Random();
//Select a random mutation point
int mutationPoint = rn.nextInt(population.individuals[0].geneLength);
//Flip values at the mutation point
if (fittest.genes[mutationPoint] == 0) {
fittest.genes[mutationPoint] = 1;
} else {
fittest.genes[mutationPoint] = 0;
}
mutationPoint = rn.nextInt(population.individuals[0].geneLength);
if (secondFittest.genes[mutationPoint] == 0) {
secondFittest.genes[mutationPoint] = 1;
} else {
secondFittest.genes[mutationPoint] = 0;
}
}
//Get fittest offspring
Individual getFittestOffspring() {
if (fittest.fitness > secondFittest.fitness) {
return fittest;
}
return secondFittest;
}
//Replace least fittest individual from most fittest offspring
void addFittestOffspring() {
//Update fitness values of offspring
fittest.calcFitness();
secondFittest.calcFitness();
//Get index of least fit individual
int leastFittestIndex = population.getLeastFittestIndex();
//Replace least fittest individual from most fittest offspring
population.individuals[leastFittestIndex] = getFittestOffspring();
}
}
//Individual class
class Individual {
int fitness = 0;
int[] genes = new int[5];
int geneLength = 5;
public Individual() {
Random rn = new Random();
//Set genes randomly for each individual
for (int i = 0; i < genes.length; i++) {
genes[i] = rn.nextInt() % 2;
}
fitness = 0;
}
//Calculate fitness
public void calcFitness() {
fitness = 0;
for (int i = 0; i < 5; i++) {
if (genes[i] == 1) {
++fitness;
}
}
}
}
//Population class
class Population {
int popSize = 10;
Individual[] individuals = new Individual[10];
int fittest = 0;
//Initialize population
public void initializePopulation(int size) {
for (int i = 0; i < individuals.length; i++) {
individuals[i] = new Individual();
}
}
//Get the fittest individual
public Individual getFittest() {
int maxFit = Integer.MIN_VALUE;
for (int i = 0; i < individuals.length; i++) {
if (maxFit <= individuals[i].fitness) {
maxFit = i;
}
}
fittest = individuals[maxFit].fitness;
return individuals[maxFit];
}
//Get the second most fittest individual
public Individual getSecondFittest() {
int maxFit1 = 0;
int maxFit2 = 0;
for (int i = 0; i < individuals.length; i++) {
if (individuals[i].fitness > individuals[maxFit1].fitness) {
maxFit2 = maxFit1;
maxFit1 = i;
} else if (individuals[i].fitness > individuals[maxFit2].fitness) {
maxFit2 = i;
}
}
return individuals[maxFit2];
}
//Get index of least fittest individual
public int getLeastFittestIndex() {
int minFit = 0;
for (int i = 0; i < individuals.length; i++) {
if (minFit >= individuals[i].fitness) {
minFit = i;
}
}
return minFit;
}
//Calculate fitness of each individual
public void calculateFitness() {
for (int i = 0; i < individuals.length; i++) {
individuals[i].calcFitness();
}
getFittest();
}
}很赞哦!(33257)
相关文章
- CBRE表示,2023年数据中心投资将增加
- 比较短的域名方便用户记忆和传播,它带来的好处往往会超过其他类型的域名,如果你非要域名短而且还要包含关键词,那么往往会事与愿违,现在这种域名基本上是可遇而不可求的。
- 二、如何选择合适的域名
- 什么样的邮箱才是安全的电子邮件地址?
- 北京电信发布基于昇腾自主创新的“AI智算中心”,开创数字经济新时代
- 用户邮箱的静态密码可能已被钓鱼和同一密码泄露。在没有收到安全警报的情况下,用户在适当的时间内不能更改密码。在此期间,攻击者可以随意输入帐户。启用辅助身份验证后,如果攻击者无法获取移动电话动态密码,他将无法进行身份验证。这样,除非用户的电子邮件密码和手机同时被盗,否则攻击者很难破解用户的邮箱。
- cm域名有什么独特之处?新人要了解cm域名哪些?
- 3、查看排名
- 数据中心网络中的铜缆:是时候向前看了吗?
- 因为域名解析需要同步到DNS根服务器,而DNS根服务器会不定时刷,只有DNS根服务器刷新后域名才能正常访问,新增解析一般会在10分钟左右生效,最长不会超过24小时,修改解析时间会稍微延长。
热门文章
站长推荐
超聚变发布FusionPoD 和全新一代FusionServer V7服务器
2、根据用户基础选择访问提供程序。由于互联问题的存在,接入商的选择也非常重要,如果用户群主要在联通,尽量选择联通接入较好的接入商,如果用户群主要在电信,那么选择电信接入较好的接入商。如果用户组位于国家/地区,则选择更好的访问提供程序进行交互。
为什么现在中文域名觉得好?使用中文域名有什么好处?
尽量不要在域名中出现特殊字符,这样的域名很容易导致访问者输入错误,同时给人留下不专业的印象,降低网站的可信度,并流失大量潜在客户。
戴尔现代数据保护解决方案 简单且经济高效的保护企业数据
打开https://www.aizhan.com/输入自己想要查询的域名然后按回车键,如果做过网站都会有数据显示出来
用户邮箱的静态密码可能已被钓鱼和同一密码泄露。在没有收到安全警报的情况下,用户在适当的时间内不能更改密码。在此期间,攻击者可以随意输入帐户。启用辅助身份验证后,如果攻击者无法获取移动电话动态密码,他将无法进行身份验证。这样,除非用户的电子邮件密码和手机同时被盗,否则攻击者很难破解用户的邮箱。
第五步:重复第四步,直到找到正确的纪录。