您现在的位置是:亿华云 > IT科技
用 TS 类型系统实现大数加法
亿华云2025-10-04 00:16:42【IT科技】3人已围观
简介实现的结果 如何实现 网上有很多实现 TS 加法的奇淫技巧,但是都有很多限制,没法实现太大的数字计算,如何实现一种高效的大数加法呢? String ->
实现的型系现结果
如何实现
网上有很多实现 TS 加法的奇淫技巧,但是统实都有很多限制,没法实现太大的数加数字计算,如何实现一种高效的型系现大数加法呢?
String -> Number[]type DigitRangeMap = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
type Digit = DigitRangeMap[number];
type ToDigit
T extends keyof DigitRangeMap
? DigitRangeMap[T]
: never;
type ToDigitList
T extends `${ infer First}${ infer Rest}`
? ToDigitList
: R;
// debug
type test = ToDigitList<"1234">; // [4, 3, 2, 1]首先我会把 String 转为 Number 数组,ToDigitList 就是统实做这个事的,考虑到后面方便逐位相加,数加所以结果处理成倒序。型系现
一位数相加type AdditionMap = [
[0,统实1,2,3,4,5,6,7,8,9],
[1,2,3,4,5,6,7,8,9,10],
[2,3,4,5,6,7,8,9,10,11],
[3,4,5,6,7,8,9,10,11,12],
[4,5,6,7,8,9,10,11,12,13],
[5,6,7,8,9,10,11,12,13,14],
[6,7,8,9,10,11,12,13,14,15],
[7,8,9,10,11,12,13,14,15,16],
[8,9,10,11,12,13,14,15,16,17],
[9,10,11,12,13,14,15,16,17,18]
];
type AddOneDigit = AdditionMap[A][B];
// debug
type test = AddOneDigit<9,8>; // 17一位数相加,总共也就只有 100 种情况,数加为了提高性能,型系现我选择了打表。统实因为 AdditionMap[x][y] == AdditionMap[y][x],数加所以再给 A,型系现 B 再排一下序,使 A > B,统实那么表的服务器租用数加体积还能再缩小一半。
处理进位type RoundMap = {
10:0; 11:1; 12:2; 13:3; 14:4; 15:5; 16:6; 17:7; 18:8; 19:9
};
type Carry
T extends keyof RoundMap
? [1, [RoundMap[T], ...R]]
: [0, [T, ...R]];
// debug
type test = Carry<15, [3, 2, 1]>; // [1, [5, 3, 2, 1]]Carry 的第一个参数 T 是上一步一位数加法 AddOneDigit 返回的结果,结果范围 0 ~ 19,为什么不是 0 ~ 18 呢?因为还可能有进位 1。因为情况较少,所以还是使用打表计算。第二个参数 R 是前面 N 位计算的结果,类型是 Digit[]。
返回的结果是一个 Array,第一个值是进位 0 | 1,服务器托管第二个值是新增了一位后的结果,类型是 Digit []。
多位数相加type IncMap = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19];
type Shift
T extends [infer First, ...infer Rest]
? Rest
: never;
type AddDigitList<
A extends any[],
B extends any[],
ACC extends [0|1, number[]] = [0, []]
> =
A[length] extends 0
? B[length] extends 0
// A为空, B为空
? ACC[0] extends 1 ? AddDigitList<[1], [], [0, ACC[1]]> : ACC[1]
// A为空, B非空
: AddDigitList, Carry, ACC[1]>>
: B[length] extends 0
// A非空, B为空
? AddDigitList // A非空, B非空 : AddDigitList< Shift, Shift, Carry< ACC[0] extends 0 ? AddOneDigit : IncMap[AddOneDigit], ACC[1] > >; // debug 重点来了,AddDigitList 接受两个 Digit[] 类型,返回同样是 Digit[] 类型加法的结果。我用参数 ACC 承载上一步 Carry 的返回作为累加的结果,我用伪代码描述一下这部分逻辑: function fn(a: number[], b: number[], acc = [0, []]) { if (a.length === 0) { if (b.length === 0) { return acc[0] == 1 ? fn([1], [], [0, acc[1]]) : acc[1]; } else { return fn( a, b.slice(1), carry(add(b[0], acc[0]), acc[0]) ) } } else { if (b.length === 0) { return fn( a.slice(1), b, carry(add(a[0], acc[0]), acc[0]) ) } else { return fn( a.slice(1), b.slice(1), carry(add(add(a[0], b[0]), acc[0]), acc[0]) ) } } }Number[] -> Stringtype StrDigitRangeMap = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; type DigitListToString T extends [infer First, ...infer Rest] ? DigitListToString< Rest, `${ R}${ First extends number ? StrDigitRangeMap[First] : n }` > : R; type Add = DigitListToString, ToDigitList>>; // debug type result = Add< "1248859103109591728912488591031095917289", 最后的处理,将 Digit[] 转为 String,看到结果顺滑的显示在我的 VSCode 提示框中,我不禁 type DigitRangeMap = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; type StrDigitRangeMap = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; type RoundMap = { 10:0; 11:1; 12:2; 13:3; 14:4; 15:5; 16:6; 17:7; 18:8; 19:9 }; type AdditionMap = [ [0,1,2,3,4,5,6,7,8,9], [1,2,3,4,5,6,7,8,9,10], [2,3,4,5,6,7,8,9,10,11], [3,4,5,6,7,8,9,10,11,12], [4,5,6,7,8,9,10,11,12,13], [5,6,7,8,9,10,11,12,13,14], [6,7,8,9,10,11,12,13,14,15], [7,8,9,10,11,12,13,14,15,16], [8,9,10,11,12,13,14,15,16,17], [9,10,11,12,13,14,15,16,17,18] ]; type IncMap = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]; type Digit = DigitRangeMap[number]; type ToDigit T extends keyof DigitRangeMap ? DigitRangeMap[T] : never; type ToDigitList T extends `${ infer First}${ infer Rest}` ? ToDigitList : R; type Shift T extends [infer First, ...infer Rest] ? Rest : never; type Carry T extends keyof RoundMap ? [1, [RoundMap[T], ...R]] : [0, [T, ...R]]; type AddOneDigit = AdditionMap[A][B]; type AddDigitList< A extends any[], B extends any[], ACC extends [0|1, number[]] = [0, []] > = A[length] extends 0 ? B[length] extends 0 ? ACC[0] extends 1 ? AddDigitList<[1], [], [0, ACC[1]]> : ACC[1] : AddDigitList, Carry, ACC[1]>> : B[length] extends 0 ? AddDigitList : AddDigitList< Shift, Shift, Carry< ACC[0] extends 0 ? AddOneDigit : IncMap[AddOneDigit], ACC[1] > >; type DigitListToString T extends [infer First, ...infer Rest] ? DigitListToString< Rest, `${ R}${ First extends number ? StrDigitRangeMap[First] : n }` > : R; type Add = 很赞哦!(7311)最后贴上完整代码