您现在的位置是:亿华云 > IT科技类资讯
Flink实时计算Pv、Uv的几种方法
亿华云2025-10-03 22:29:57【IT科技类资讯】0人已围观
简介本文转载自微信公众号「Java大数据与数据仓库」,作者柯少爷。转载本文请联系Java大数据与数据仓库公众号。实时统计pv、uv是再常见不过的大数据统计需求了,前面出过一篇SparkStreaming实
本文转载自微信公众号「Java大数据与数据仓库」,实时计算作者柯少爷。种方转载本文请联系Java大数据与数据仓库公众号。实时计算
实时统计pv、种方uv是实时计算再常见不过的大数据统计需求了,前面出过一篇SparkStreaming实时统计pv,种方uv的案例,这里用Flink实时计算pv,实时计算uv。
我们需要统计不同数据类型每天的种方pv,uv情况,实时计算并且有如下要求.
每秒钟要输出最新的统计结果; 程序永远跑着不会停,所以要定期清理内存里的过时数据; 收到的消息里的时间字段并不是按照顺序严格递增的,所以要有一定的容错机制; 访问uv并不一定每秒钟都会变化,重复输出对IO是巨大的浪费,所以要在uv变更时在一秒内输出结果,未变更时不输出;Flink数据流上的类型和操作
DataStream是flink流处理最核心的数据结构,其它的种方各种流都可以直接或者间接通过DataStream来完成相互转换,一些常用的实时计算流直接的转换关系如图:
可以看出,DataStream可以与KeyedStream相互转换,种方KeyedStream可以转换为WindowedStream,实时计算DataStream不能直接转换为WindowedStream,种方WindowedStream可以直接转换为DataStream。云服务器实时计算各种流之间虽然不能相互直接转换,但是都可以通过先转换为DataStream,再转换为其它流的方法来实现。
在这个计算pv,uv的需求中就主要用到DataStream、KeyedStream以及WindowedStream这些数据结构。
这里需要用到window和watermark,使用窗口把数据按天分割,使用watermark可以通过“水位”来定期清理窗口外的迟到数据,起到清理内存的作用。
业务代码
我们的数据是json类型的,含有date,version,guid这3个字段,在实时统计pv,uv这个功能中,其它字段可以直接丢掉,当然了在离线数据仓库中,所有有含义的业务字段都是要保留到hive当中的。其它相关概念就不说了,会专门介绍,这里直接上代码吧。
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.ddxygq</groupId> <artifactId>bigdata</artifactId> <version>1.0-SNAPSHOT</version> <properties> <scala.version>2.11.8</scala.version> <flink.version>1.7.0</flink.version> <pkg.name>bigdata</pkg.name> </properties> <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-scala_2.11</artifactId> <version>{ flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>flink.version</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.11</artifactId> <version>{ flink.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.8 --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka-0.10_2.11</artifactId> <version>flink.version</version> </dependency> <build> <!--测试代码和文件--> <!--<testSourceDirectory>{ basedir}/src/test</testSourceDirectory>--> <finalName>basedir/src/test</testSourceDirectory>−−><finalName>{ pkg.name}</finalName> <sourceDirectory>src/main/java</sourceDirectory> <resources> <resource> <directory>src/main/resources</directory> <includes> <include>*.properties</include> <include>*.xml</include> </includes> <filtering>false</filtering> </resource> </resources> <plugins> <!-- 跳过测试插件--> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <configuration> <skip>true</skip> </configuration> </plugin> <!--编译scala插件--> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <version>2.15.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>主要代码,主要使用scala开发:
package com.ddxygq.bigdata.flink.streaming.pvuv import java.util.Properties import com.alibaba.fastjson.JSON import org.apache.flink.runtime.state.filesystem.FsStateBackend import org.apache.flink.streaming.api.CheckpointingMode import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor import org.apache.flink.streaming.api.scala.{ DataStream, StreamExecutionEnvironment} import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.triggers.ContinuousProcessingTimeTrigger import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010 import org.apache.flink.streaming.util.serialization.SimpleStringSchema import org.apache.flink.streaming.api.scala.extensions._ import org.apache.flink.api.scala._ /** * @ Author: keguang * @ Date: 2019/3/18 17:34 * @ version: v1.0.0 * @ description: */ object PvUvCount { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment // 容错 env.enableCheckpointing(5000) env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) env.setStateBackend(new FsStateBackend("file:///D:/space/IJ/bigdata/src/main/scala/com/ddxygq/bigdata/flink/checkpoint/flink/tagApp")) // kafka 配置 val ZOOKEEPER_HOST = "hadoop01:2181,hadoop02:2181,hadoop03:2181" val KAFKA_BROKERS = "hadoop01:9092,hadoop02:9092,hadoop03:9092" val TRANSACTION_GROUP = "flink-count" val TOPIC_NAME = "flink" val kafkaProps = new Properties() kafkaProps.setProperty("zookeeper.connect", ZOOKEEPER_HOST) kafkaProps.setProperty("bootstrap.servers", KAFKA_BROKERS) kafkaProps.setProperty("group.id", TRANSACTION_GROUP) // watrmark 允许数据延迟时间 val MaxOutOfOrderness = 86400 * 1000L // 消费kafka数据 val streamData: DataStream[(String, String, String)] = env.addSource( new FlinkKafkaConsumer010[String](TOPIC_NAME, new SimpleStringSchema(), kafkaProps) ).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(MaxOutOfOrderness)) { override def extractTimestamp(element: String): Long = { val t = JSON.parseObject(element) val time = JSON.parseObject(JSON.parseObject(t.getString("message")).getString("decrypted_data")).getString("time") time.toLong } }).map(x => { var date = "error" var guid = "error" var helperversion = "error" try { val messageJsonObject = JSON.parseObject(JSON.parseObject(x).getString("message")) val datetime = messageJsonObject.getString("time") date = datetime.split(" ")(0) // hour = datetime.split(" ")(1).substring(0, 2) val decrypted_data_string = messageJsonObject.getString("decrypted_data") if (!"".equals(decrypted_data_string)) { val decrypted_data = JSON.parseObject(decrypted_data_string) guid = decrypted_data.getString("guid").trim helperversion = decrypted_data.getString("helperversion") } } catch { case e: Exception => { println(e) } } (date, helperversion, guid) }) // 这上面是设置watermark并解析json部分 // 聚合窗口中的数据,服务器租用可以研究下applyWith这个方法和OnWindowedStream这个类 val resultStream = streamData.keyBy(x => { x._1 + x._2 }).timeWindow(Time.days(1)) .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1))) .applyWith(("", List.empty[Int], Set.empty[Int], 0L, 0L))( foldFunction = { case ((_, list, set, _, 0), item) => { val date = item._1 val helperversion = item._2 val guid = item._3 (date + "_" + helperversion, guid.hashCode +: list, set + guid.hashCode, 0L, 0L) } } , windowFunction = { case (key, window, result) => { result.map { case (leixing, list, set, _, _) => { (leixing, list.size, set.size, window.getStart, window.getEnd) } } } } ).keyBy(0) .flatMapWithState[(String, Int, Int, Long, Long),(Int, Int)]{ case ((key, numpv, numuv, begin, end), curr) => curr match { case Some(numCurr) if numCurr == (numuv, numpv) => (Seq.empty, Some((numuv, numpv))) //如果之前已经有相同的数据,则返回空结果 case _ => (Seq((key, numpv, numuv, begin, end)), Some((numuv, numpv))) } } // 最终结果 val resultedStream = resultStream.map(x => { val keys = x._1.split("_") val date = keys(0) val helperversion = keys(1) (date, helperversion, x._2, x._3) }) resultedStream.print() env.execute("PvUvCount") } }使用List集合的size保存pv,使用Set集合的size保存uv,从而达到实时统计pv,uv的目的。
这里用了几个关键的函数:
applyWith:里面需要的参数,初始状态变量,和foldFunction ,windowFunction ;
存在的问题
显然,当数据量很大的时候,这个List集合和Set集合会很大,并且这里的pv是否可以不用List来存储,而是通过一个状态变量,不断做累加,对应操作就是更新状态来完成。
改进版
使用了一个计数器来存储pv的值。
packagecom.ddxygq.bigdata.flink.streaming.pvuv import java.util.Properties import com.alibaba.fastjson.JSON import org.apache.flink.api.common.accumulators.IntCounter import org.apache.flink.runtime.state.filesystem.FsStateBackend import org.apache.flink.streaming.api.CheckpointingMode import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor import org.apache.flink.streaming.api.scala.{ DataStream, StreamExecutionEnvironment} import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.triggers.ContinuousProcessingTimeTrigger import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010 import org.apache.flink.streaming.util.serialization.SimpleStringSchema import org.apache.flink.streaming.api.scala.extensions._ import org.apache.flink.api.scala._ import org.apache.flink.core.fs.FileSystem object PvUv2 { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment // 容错 env.enableCheckpointing(5000) env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) env.setStateBackend(new FsStateBackend("file:///D:/space/IJ/bigdata/src/main/scala/com/ddxygq/bigdata/flink/checkpoint/streaming/counter")) // kafka 配置 val ZOOKEEPER_HOST = "hadoop01:2181,hadoop02:2181,hadoop03:2181" val KAFKA_BROKERS = "hadoop01:9092,hadoop02:9092,hadoop03:9092" val TRANSACTION_GROUP = "flink-count" val TOPIC_NAME = "flink" val kafkaProps = new Properties() kafkaProps.setProperty("zookeeper.connect", ZOOKEEPER_HOST) kafkaProps.setProperty("bootstrap.servers", KAFKA_BROKERS) kafkaProps.setProperty("group.id", TRANSACTION_GROUP) // watrmark 允许数据延迟时间 val MaxOutOfOrderness = 86400 * 1000L val streamData: DataStream[(String, String, String)] = env.addSource( new FlinkKafkaConsumer010[String](TOPIC_NAME, new SimpleStringSchema(), kafkaProps) ).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(MaxOutOfOrderness)) { override def extractTimestamp(element: String): Long = { val t = JSON.parseObject(element) val time = JSON.parseObject(JSON.parseObject(t.getString("message")).getString("decrypted_data")).getString("time") time.toLong } }).map(x => { var date = "error" var guid = "error" var helperversion = "error" try { val messageJsonObject = JSON.parseObject(JSON.parseObject(x).getString("message")) val datetime = messageJsonObject.getString("time") date = datetime.split(" ")(0) // hour = datetime.split(" ")(1).substring(0, 2) val decrypted_data_string = messageJsonObject.getString("decrypted_data") if (!"".equals(decrypted_data_string)) { val decrypted_data = JSON.parseObject(decrypted_data_string) guid = decrypted_data.getString("guid").trim helperversion = decrypted_data.getString("helperversion") } } catch { case e: Exception => { println(e) } } (date, helperversion, guid) }) val resultStream = streamData.keyBy(x => { x._1 + x._2 }).timeWindow(Time.days(1)) .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1))) .applyWith(("", new IntCounter(), Set.empty[Int], 0L, 0L))( foldFunction = { case ((_, cou, set, _, 0), item) => { val date = item._1 val helperversion = item._2 val guid = item._3 cou.add(1) (date + "_" + helperversion, cou, set + guid.hashCode, 0L, 0L) } } , windowFunction = { case (key, window, result) => { result.map { case (leixing, cou, set, _, _) => { (leixing, cou.getLocalValue, set.size, window.getStart, window.getEnd) } } } } ).keyBy(0) .flatMapWithState[(String, Int, Int, Long, Long),(Int, Int)]{ case ((key, numpv, numuv, begin, end), curr) => curr match { case Some(numCurr) if numCurr == (numuv, numpv) => (Seq.empty, Some((numuv, numpv))) //如果之前已经有相同的数据,则返回空结果 case _ => (Seq((key, numpv, numuv, begin, end)), Some((numuv, numpv))) } } // 最终结果 val resultedStream = resultStream.map(x => { val keys = x._1.split("_") val date = keys(0) val helperversion = keys(1) (date, helperversion, x._2, x._3) }) val resultPath = "D:\\space\\IJ\\bigdata\\src\\main\\scala\\com\\ddxygq\\bigdata\\flink\\streaming\\pvuv\\result" resultedStream.writeAsText(resultPath, FileSystem.WriteMode.OVERWRITE) env.execute("PvUvCount") } }改进
其实这里还是需要set保存uv,难免对内存有压力,如果我们的集群不大,源码库为了节省开支,我们可以使用外部媒介,如hbase的rowkey唯一性、redis的set数据结构,都是可以达到实时、快速去重的目的。
参考资料
https://flink.sojb.cn/dev/event_time.htm
lhttp://wuchong.me/blog/2016/05/20/flink-internals-streams-and-operations-on-streams
https://segmentfault.com/a/1190000006235690
很赞哦!(175)
热门文章
站长推荐
打开https://www.aizhan.com/输入自己想要查询的域名然后按回车键,如果做过网站都会有数据显示出来
一个简单的跨域问题,一不小心就带来三个大大的 BUG
23种设计模式速记
10分钟带你了解DevOps工具
当投资者经过第二阶段的认真学习之后又充满了信心,认为自己可以在市场上叱咤风云地大干一场了。但没想到“看花容易绣花难”,由于对理论知识不会灵活运用.从而失去灵活应变的本能,就经常会出现小赢大亏的局面,结果往往仍以失败告终。这使投资者很是困惑和痛苦,不知该如何办,甚至开始怀疑这个市场是不是不适合自己。在这种情况下,有的人选择了放弃,但有的意志坚定者则决定做最后的尝试。
构建一个即时消息应用(四):消息
I/O 多路复用底层原理前篇 - 五种IO模型
使用JavaScript 创建复制&粘贴按钮